
Scicos Serial-Interface-Block Manual 12.05 (pre-Alpha)

Dipl.-Ing. Klaus Weichinger / snaky.1@gmx.at / bioe.sourceforge.net

May 4, 2012

This document was written in a short time and no
review were performed. So this document will have
failures. Please give positive and/or negative feedback
of your experience with this toolbox.

Abstract
This document describes the installation and usage

of the Serial-Interface Scicos block and a demo with
the Arduino-UNO board (see http://www.arduino.cc).

License and Information
The documents, pictures, schematics and lay-

outs of this project are distributed under the
terms and conditions of the Creative Commons
Attribution-Share Alike 3.0 Unported License (see
http://creativecommons.org/licenses/by-sa/3.0).

The software of this project is distributed under the
terms and conditions of the Creative Commons GNU
General Public License. The full text of GPLv2 is
included below. In addition to the requirements in the
GPL, we STRONGLY ENCOURAGE you to do the
following:

1. Create a zip archive of your entire project and
send it to the author by e-mail and/or publish it
on a web site and drop the author a note with the
URL.

2. Adhere to minimum publication standards. Please
include AT LEAST:

• a circuit diagram in PDF, PNG or GIF for-
mat

• full source code for the host software

• a Readme.txt file in ASCII format which de-
scribes the purpose of the project and what
can be found in which directories and which
files

• a reference to the author and (if available) a
reference to the project web site

• a PDF document under a free license so that
the author of this software can publish it on
the web site as reference and/or contribution
project.

3. If you improve the firmware or hardware itself,
please give us a free license to your modifications
for our license offerings.

1 Introduction

In [1] a low cost do-it-self automation system called
BIOE was presented. This system uses the parallel
printer port to interconnect a PC with a physical plant
and to control this plant with a hard real-time system
as discussed in [2, 3, 4, 5]).

I was often asked why i’m using the parallel port
and why i’m not using the Arduino-UNO board [6]
because many people do have this.

Figure 1: Arduino-UNO

So i decided to develop a ScicosLab block that
can exchange signals via the serial port with other
devices like the Arduino-UNO. The provided approach
uses the real-time scaling capability of a ScicosLab
simulation so that soft real-time applications can be
realized and run directly within ScicosLab.

At the moment the toolbox supports only Sci-
cosLab 4.4.1 on WIN32.

In the following sections the concept, installation
and usage of the Scicos block called serialinterface-
block are discussed.

2 Concept

The concept uses a single ScicosLab block, that
sends a set of signals to the device and receives a set
of signals from the device like illustrated in Figure 2.

1



Figure 2: Example using Arduino-UNO and the seri-
alinterfaceblock

For the realization the following techniques were
used:

• Serial-Port: the data exchange between Sci-
cosLab and the device uses serial ports like the
USB virtual comport used at the Arduino-UNO

• Threading: the handling of the serial port is re-
alized within a seperate thread so that the Sci-
cosLab simulation does not influence the serial
communication

• Base64: The signals are exchanged in base64 [7]
formated binary blocks

• Arduino-UNO: This board is a well known piece
of hardware that could be used as simple in-
put/output interface

The different components are discussed in more detail
in the following subsections.

2.1 Serial-Port
The real RS232 serial port is more and more obso-

lete on standard PCs, Notebooks and Netbooks. The
USB is normally on each available and there is also the
possibility to connect mikrocontrollers with an UART
to the PC by the use of USB to SERIAL bridges. This
concept is also used on the Arduino-UNO board. On
both sides (PC and mikrocontroller) the interface acts
like a normal serial port.

But there are some differences: Due to the fact that
USB uses a cycle based communication concept there

are delays (1ms and more) within the communication.
These delays influences the real-time capabilities dra-
matically compared to a real serial or parallel port.

Nevertheless control systems with cycle times of
20ms ore more can be realized for educational or pro-
totyping usage.

2.2 Threading

ScicosLab will be used as platform to implement
a control low. Normally cycle times of 20ms or more
can be realized directly on WIN32 systems for soft
real-time educational or prototype experiments. To
provide a fast data exchange via the serial interface the
serialinterfaceblock creates a new thread that handles
incoming and outgoing data.

For the detailed implementation just have a look to
scicosthreading.h and serialinterfaceblock.c

of this toolbox.

2.3 Base64

To reduce the code and CPU effort to create se-
rial frame and to encapsulate or to extract the sig-
nal information of different type the memory block of
the idea to store the signals in a C structure and to
transmit the memory block was used. This memory
block is transformed to a base64 [7] because it reduces
the transmitted data size compared to a ASCII-HEX
transformation. The binary blockes is encapsulated
between ”<. . .>”. Furthermore a CRC16 checksum
is placed at the end of a C structure so that the in-
tegrity of a frame can be ensured.

The example frame sent from the Arduino-UNO
<nwKQAokCggJ6AnICAoCnhD==> contains
the binary information of the following C structure

struct txFrame
{

unsigned short Analog0;
unsigned short Analog1;
unsigned short Analog2;
unsigned short Analog3;
unsigned short Analog4;
unsigned short Analog5;
unsigned short Position;
unsigned char crc1;
unsigned char crc2;

};

So at the end 26 bytes (including overhead) are sent to
transmit a buffer with 16 bytes. The symbol ”<” sig-
nalizes that a new base64 will follow. The implemen-
tation translates the base64 stream to the binary on
demand. If the symbol ”>” is received, the CRC16 if
the buffer is checked and if it is valid the signal values
are passed to the inputs/outputs of the ScicosLab
block / Arduino-UNO.

2.4 Arduino-UNO

The Arduino-UNO contains a 8bit AVR mikrocon-
troller and provides a serial port via USB. It con-
tains 10bit analog digital converter and 8bit PWM
signals. The firmware ArduinoScicos-UniversalIO

contained with the toolbox passes following signals
from/to ScicosLab:

2



• The 10bit value of Analog0...5 are sent to Sci-
cosLab

• Pin2&3 are the inputs for position encoder sig-
nals. The position is sent to ScicosLab

• Pin9, Pin10, Pin11 are 8bit PWM signals that
can be set by ScicosLab

• Pin5, Pin6, Pin7, Pin8, Pin12 and Pin13 (LED
L) can be set by ScicosLab

3 Installation

General follow the installation instructions pro-
vided with the readme.txt within the toolbox pack-
age. If the installation was successful and ScicosLab
is started, the start window should show you the ver-
sion information of the toolbox (see Figure 3).

Figure 3: Startscreen of ScicosLab shows the version
information of the toolbox

4 Usage of the ScicosLab Block

The ScicosLab block serialinterfaceblock can not
be found within the palette. To insert the block select
menu-Edit-Ad new block, type serialinterfaceblock
(Figure 4), press OK ans place the block within the
workspace (Figure 5).

Figure 4: Type the block name

Figure 5: Place the ScicosLab block

Within the block options the serial port name and
the data frame format can specified. The block uses
the sequence of characters to extract the relating bytes
of the c structur memory block and convert it to a
signal or the other way round. Detaild information
of the supported format is noted within the options
dialog them self.

5 Revision History
The version number xx.yy represents the year xx

and month yy when the version was released.

5.1 Version 12.05 (pre-Alpha)
The first release of this project to the community

for testing and additional feature requests. This ver-
sion still provides all necessary functionalities so that
it can be used for educational purposes.

References
[1] Weichinger, K.: A Nonlinear Model-Based Con-

trol realized with an Open Framework for Edu-
cational Purposes. Proceedings of the 13th Real-
Time LinuxWorkshop in Prague, Open Source Au-
tomation Development Lab (OSADL) eG, 2011.

[2] RTAI - Real Time Application Interface Official
Website: https://www.rtai.org. Web. 20 Aug.
2011.

[3] Real-Time Linux Wiki:
http://rt.wiki.kernel.org. Web. 20 Aug. 2011.

[4] Bucher, R.: rt-preempt Code Generation Package
for ScicosLab
http://www.dti.supsi.ch/b̃ucher. Web. 20 Aug.
2011.

[5] Basic Input Output Elements Project Website:
http://bioe.sourceforge.net. Web. 27 Dec. 2011.

[6] Arduino Project Website:
http://www.arduino.cc. Web. 03 May 2012.

3



[7] Josefsson, S.: RFC4648: The Base16, Base32,
and Base64 Data Encodings, October 2006,
http://www.ietf.org/rfc/rfc4648.txt, Web. 20 Aug.
2011.

[8] ScicosLab 4.4.1 - Project Website:
http://www.scicoslab.org. Web. 20 Aug. 2011.

[9] Scilab / Scicos Website:
http://www.scilab.org. Web. 20 Aug. 2011.

4


